
Abstract - One of the important roles of a DNA sensor is the 
capability of detecting genetic diseases or mutations by 
analyzing DNA sequence. The electrochemical detection method 
can be simpler and cheaper than other methods available and 
hence this method was investigated in this paper. For a 
successful electrochemical detection, several aspects should be 
considered including chemical treatment of electrode surface, 
DNA immobilization on electrode, hybridization, choice of an 
intercalator to be bound to double stand DNA selectively, and an 
equipment for detecting and analyzing the output signal. The 
intercalator bound to double strand DNA results in an electrical 
current. With the electrochemical detection method, double 
strand DNA was distinguished from single strand DNA or bare 
gold electrode by measuring reduction current of intercalator. 
Also, it was found that the reduction current of intercalator is 
proportional to the concentration of target DNA to be 
hybridized with probe DNA. Therefore, it is possible to realize a 
simple and cheap DNA sensor using the electrochemical 
detection method for DNA sequencing. 
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I. INTRODUCTION 

 
With the progress of biotechnology, the efforts of detecting 

genetic diseases and mutations for improving functions of 
living organism through the analysis of DNA sequence have 
increased recently [1]. There are several methods presented 
by other researchers for the analysis of the DNA sequence, 
including mass sensitive detection method [2,3], optical 
method [4,5], and electrochemical method [6-9]. 

Among these methods, the electrochemical detection 
method has several advantages compared to other methods. 
First, the electrochemical detection system can be cheap and 
small because it requires three-electrodes, a signal generator, 
and a signal processing chip. This system can be much 
cheaper than other detection systems because it doesn’t 
require complicated parts. Second, the process of the 
electrochemical detection is fairly simple, and the acquisition 
time of results is short. Last, the outputs from the 
electrochemical measurement are electrical signals, which 
easily can be applied to other electronic system. 

For a successful electrochemical measurement, several 
aspects should be considered such as choice of electrode 
material, chemical treatment (or modification) of the 
electrode surface, immobilization condition of probe DNA on 
the modified electrodes, target DNA hybridization condition, 
and choice of an intercalator to be bound to double strand 
DNA (dsDNA) selectively. The intercalator bound to the 
dsDNA is believed to cause an electric current by its 
reduction. In this research, a commercially available 
electrochemical analysis system was used to make redox 

condition for experiments and to measure the reduction 
current due to the intercalator. 

This paper presents the process of the electrochemical 
detection method for a specific DNA sequence and the 
experimental results using Au electrodes with 2-mercapto-
ethanol as electrode surface treatment material and methylene 
blue as an intercalator. The result shows a distinct peak 
current difference between dsDNA and a single strand DNA 
(ssDNA) from a cyclic voltammetry. The dependence of 
reduction peak current on the methylene blue concentration 
was also observed when the target DNA was hybridized with 
the probe DNA. 
 

II. EXPERIMENTAL PROCEDURE 
 

1) Preparation of Electrodes: 
Zhao et al. reported the hydroxyl-terminated self-

assembled monolayer (SAM) is a good substrate for the 
covalent immobilization of dsDNA on gold surface [10]. In 
this experiment, Au was chosen as electrode material, and a 
gold electrode with 2mm2 in area was purchased from 
Bioanalytical Systems (BAS). It was soaked in boiling 2 M 
NaOH for 5 minutes, concentrated nitric acid for 5 minutes, 
and piranha solution for 3 minutes in order and washed by 
vortexing for 3 minutes twice. After cleaning, the electrode 
was voltammetrically cycled and characterized from 0.1 V to 
1.5 V vs. Ag/AgCl in 0.1 M H2SO4 solution until a stable 
cyclic voltammogram was obtained using a BAS Model CV-
50W electrochemical analyzer. The electrode was then 
soaked in 1 mM 2-mercaptoethanol (2-ME) solution for 2 
hours to make 2-ME layer onto the electrode surface. Thus a 
2-ME SAM modified gold electrode was obtained (2ME/Au). 

 
2) Probe DNA Immobilization: 
The 2ME/Au was reacted with 1 nmol probe DNA (5'-TCT 

TTT GGC GGT ATG CAC TT-3') in the presence of 10 µg 
1-ethyl-3-(3-dimethylamino-propyl)carbodiimide hydrochlo-
ride (EDAC) in 1 µl 40 mmole 2-[N-morpholino]ethanesulf-
onic acid (MES) buffer (pH 4.5) for 24 hours at room 
temperature. As a result, a 2-ME/Au immobilized with single 
strand DNA is obtained (ssDNA-2ME/Au).  

 
3) Hybridization: 
The ssDNA-2ME/Au was reacted with 1 nmol target DNA 

(5'-AA GTG CAT ACC GCC AAA AGA-3') in 30 µl 
hybridization solution containing 2.7 µg salmon sperm DNA, 
175 µg MES acid, 481 µg MES potassium salt, 26.6 µmol 
NaCl, 0.6 µmol ethylene diaminetetraacetate (EDTA) and 
0.01% Tween 20 in 30 µL hybridization solution for 24 hours 
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at 37ºC. In order to eliminate nonspecifically bound DNAs 
and contaminants after hybridization, the electrode was 
washed in the washing solution containing 59 mg MES acid, 
161 mg MES sodium salt, 0.26 mmol NaCl and 0.01% Tween 
20 for 15 minutes at 37ºC three times. As a result, an 
ssDNA/Au hybridized with target DNA was obtained 
(dsDNA-2ME/Au). 

 
4) Intercalation and Electrochemical Measurements: 
2ME/Au, ssDNA-2ME/Au, dsDNA-2ME/Au made by 

above steps were soaked in the presence of 5 mM phosphate 
salt buffer (pH 7.0), 50 mM NaCl, 0.2 mM potassium 
ferricyanide ([Fe(CN)6]3-), 0.5 µM methylene blue in 
electrolyte for 10 minutes at room temperature under a dark 
condition, and the cyclic voltammetry (CV) and the 
chronocoulometry (CC) were carried out at room temperature 
with a 2ME/Au or ssDNA-2ME/Au or dsDNA-2ME/Au as a 
working electrode, a Ag/AgCl reference electrode (BAS 
Model MW-4130) and Pt counter electrode (BAS Model MF-
2052). Then a reduction current of methylene blue was 
measured by 1 cycle CV with − 100 mV/sec scan rate and CC 
at − 220 mV. Also, to examine the dependence of the 
concentration of target DNA on the output current, each 
ssDNA-2ME/Au was hybridized with 0, 0.1, 0.5, 1 nmol/30 
µL target DNA as procedure 3), and then CV and CC were 
carried out. The measured data was stored to a computer 
connected with electrochemical analyzer. 
 

III. RESULTS & DISCUSSION 
 

For the electrochemical measurement, chemical treatment 
of the electrode surface to immobilize probe DNA on the 
electrode must be considered. Therefore, Au was used as 
electrode material, and 2-ME layer was formed onto the Au 
electrode. After immobilization of probe DNA on 2ME/Au, 
ssDNA-2ME/Au was hybridized with a target DNA, and then 
dsDNA-2ME/Au was made (Fig. 1). 

 

 
Fig 1. (a) Bare Au, (b) 2ME/Au, (c) ssDNA-2ME/Au, (d) dsDNA-2ME/Au 

made at each process of the experimental procedure.  
 

These electrodes were soaked in the presence of potassium 
ferricyanide, methylene blue in electrolyte for 10 minutes, 
and then methylene blue was bound in base pairs of double 
strand DNA selectively. Therefore, a larger reduction current 

with methylene blue was produced in dsDNA-2ME/Au than 
both 2ME/Au and ssDNA-2ME/Au when the electrochemical 
measurement was carried out. There is a schematic 
representation of redox by the electrochemical method on 
dsDNA-2ME/Au in Fig. 2. Electrons flow from the electrode 
to intercalated methylene blue in base pairs of double strand 
DNA and then are accepted by [Fe(CN)6]3- in solution. 
Chemically oxidized methylene blue is again available for 
electrochemical reduction. This process can be repeated until 
the electrode is no longer at a potential to reduce methylene 
blue or all [Fe(CN)6]3- in the solution. 

 

 
Fig. 2. Electrons (2e-) flow from the electrode to intercalated methylene blue 
in base pairs of double strand DNA and then are accepted by [Fe(CN)6]3- in 

electrolyte solution. 
 

The Au electrodes were measured in three electrodes, one-
compartment cell with an Ag/AgCl reference electrode and a 
Pt counter electrode. This measurement system is shown in 
Fig. 3. 

 

 
Fig. 3. Electrochemical measurement system 

 
The maximum reduction current of methylene blue 

occurred at − 220 mV with CV, and the results from six times 
measurement using different Au electrodes and reagents was 
shown in Fig. 4. Rectangles and lines represent the average 
and the standard deviation of measured values from each 
electrode, respectively. The graph of Fig. 4 shows that the 
average values of the peak reduction currents of methylene 
blue are about 17 nA (2ME/Au), 22 nA (ssDNA-2ME/Au), 
115 nA (dsDNA-2ME/Au). They prove that methylene blue 
binds more to dsDNA than ssDNA. Therefore, it is possible 
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that a fabrication of DNA sensor that can distinguish dsDNA 
from ssDNA in just a few seconds by the electrochemical 
measurement. 
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Fig. 4. The maximum values of current caused by reduction of methylene 

blue in 2ME/Au, ssDNA-2ME/Au, and dsDNA-2ME/Au at − 220 mV. The 
result was calculated after six times measurement using different Au 

electrodes and reagents by CV with - 100 mV/sec scan rate from − 100 mV 
to − 400 mV. Rectangles and lines represent the averages and the standard 

deviations of measured value respectively. 
 

The possibility of detection of dsDNA by CC as well as CV 
was proved, and the result from six times measurement using 
different Au electrodes and reagents of CC was shown in Fig. 
5. Rectangles and lines represent the averages and the 
standard deviations of measured values from each electrode, 
respectively. Figure 5 shows that the average values of charge 
of methylene blue are 1.7 µC (2ME/Au), 2.5 µC (ssDNA-
2ME/Au), 2.9 µC (dsDNA-2ME/Au) at 5 seconds and 2.9 µC 
(2ME/Au), 4.1 µC (ssDNA-2ME/Au), 5.0 µC (dsDNA-
2ME/Au) at 10 seconds. This result supports the former result 
obtained from the CV measurements. 
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Fig. 5. The average values of charge caused by methylene blue in 2ME/Au, 

ssDNA-2ME/Au, dsDNA-2ME/Au. The results were calculated after six 
times measurement using different Au electrodes and reagents by CC for 5 

seconds (white rectangle) and 10 seconds (black rectangle) at − 220 mV. The 
lines represent the standard deviations of measured value. 

Next, in order to investigate the dependence of the 
concentration of target DNA for hybridizing with probe DNA 
on the output current, ssDNA-2ME/Au were hybridized at 
various concentrated target DNA. Identically with the above, 
CV and CC were carried out with each electrode, and the 
results from the six times measurement using different Au 
electrodes and reagents was shown in Fig. 6 and 7. 
Rectangular spots and vertical lines represent the averages 
and the standard deviations of measured values from each 
electrode. From these graph, the approximate results were 
shown in table 1. The results shows that the reduction current 
of methylene blue is proportional to the concentration of 
target DNA for hybridizing with probe DNA. Therefore, just 
by measuring output current from the electrode, quantitative 
analysis of double strand DNA is possible. 
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Fig. 6. The maximum values of current caused by reduction of methylene 
blue at − 220 mV vs. the concentrations of target DNA. The result was 

calculated after five times measurement using different Au electrodes and 
reagents by cyclic voltammetry with − 100 mV/sec scan rate from − 100 mV 
to − 400 mV.  The rectangular black spots and the vertical lines represent the 

averages and the standard deviations of measured value respectively. 
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Fig. 7. The values of charge caused by reduction of methylene blue at − 220 
mV vs. the concentrations of target DNA. The results were calculated after 

five times measurement using different Au electrodes and reagents by 
chronocoulmetry for 5 seconds (rectangular black spots) and 10 seconds 
(rectangular white spots) at − 220 mV. The vertical lines represent the 

standard deviations of measured value. 
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TABLE 1 
THE REDUCTION CURRENT AND CHARGE OF METHYLENE BLUE VS. TARGET DNA 

CONCENTRATION. 

Chronocoulometry (µC) Concentration 
(nmol/30µl) 

Cyclic 
Voltammetry 

(nA) 5 sec. 10 sec. 

0.0 23 ± 4 2.49±0.10 4.24±0.14 

0.1 78 ± 16 3.25±0.08 5.49±0.14 

0.5 210 ± 30 3.26±0.08 5.60±0.14 

1.0 225 ± 26 3.30±0.10 5.70±0.16 

 
 

IV. CONCLUSIONS 
 

The electrochemical measurement has a capability to 
distinguish dsDNA from ssDNA in just a few seconds, with 
either cyclic voltammetry or chronocoulometry. Even 
quantitative analysis of double strand DNA is possible just by 
measuring output current from the electrode. In order to take 
advantages of this simple electrochemical detection method, a 
small and cheap electronic control system would be required 
for increasing the minute current from DNA modified 
electrode. It will be possible that a fabrication of micro DNA 
sensor that have good yield, if microelectrode can be made by 
MEMS technology. It won’t be far away to see that 
restoration and improvement of living organism's function 
through detecting of genetic disease and mutations by 
electrochemical measurement are realized. 
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